
Software Testing Techniques in Software
Development Life Cycle

D.Meenakshi , J. Swami Naik , M.Raghavendra Reddy

Computer Science Department,

G.Pulla Reddy Engineering College
Kurnool,AndhraPradesh, India

Abstract: Software testing provides a means to minimize
errors, cut maintenance and decrease overall software costs.
Different software development and testing methodologies,
tools, and techniques have emerged to enhance software
quality. At each and every phase of software development life
cycle testing is performed with different tools and techniques.
One of the major problems within software testing area is how
to get a suitable set of cases to test a software system. The
software should assure maximum effectiveness with the least
possible number of test cases. At present there are many
testing techniques available for generating test cases.

Keywords: Software Testing, Level of Testing, Testing
Technique, Testing Process

I. INTRODUCTION
Software testing is as getting on as the hills in the the past
digital computers. Testing the software is the only means
for assessing the quqlity of software . in view of the fact
that testing typically consumes 40 - 50% of effort in
devolopment, and requires more effort for systems that
require more reliability, it is an important t part of the
software engineering. Contemporary software systems
must be more reliable and correct. Automatic methods are
used for ensuring software correctness which range from
static techniques, such as (software) model checking or
static analysis, to dynamic techniques , such as testing. All
these testing techniques have strengths and weaknesses:
model checking (with abstraction) is automatic, exhaustive,
but may suffer from scalability issues. Static analysis, on
the other hand, scales to very large programs but may give
too many fake warnings, while testing alone may miss
significant errors, since it is intrinsically incomplete.
Software Testing:
Software testing is not only error detection; Testing
software means operating the programs under controlled
conditions, to (1) checks whether it behaves “as specified”;
(2) to detect errors, and (3) to validate that what has been
specified is what the user actually wants.

1. Verification is defined as checking or testing of items,

including software, for conformance and reliability by
evaluating the results against requirements specified

by the user. [Verification: Are we building the product
right?]

2. Error Detection: Testing makes an attempt to go
things wrong and to determine if things happen when
they shouldn‟t or things don‟t happen when they
should.

3. Validation looks at the system correctness – i.e. is
defined as checking that what has been specified is hat
the user actually wanted. [Validation: Are we building
the right prduct?]

The purpose of testing is verification, validation and error
detection in order to detect problems – and the purpose of
finding those problems is to get them set. Most generic
Software problems are : Inadequate software performance,
Data searches that yields incorrect results. Incorrect data
entry & unsuccessful data edits, wrong coding /
implementation of business rules, Incorrect calculation,
ineffective data edits, Incorrect processing of data
relationship, Incorrect or inadequate interfaces with other
programs, Inadequate performance and security controls,
Incorrect file handling, insufficient support of business
needs, Unreliable results or performance, Confusing or
misleading data, Software usability by end users &
Obsolete Software, Inconsistent processing.

Terminology:

 Mistake – A manual action done which produce an
incorrect result.

 Fault [or Defect] – An incorrect step, process, or
data definition in a program.

 Failure – The lack of ability of a system or
component to execute its Required function within
the precise Performance requirement.

 Error – The variation between a computed,
observed, or Metric or condition and the
true,specified, or theoretically correct value or
condition.

 Specification – A document that specifies in a
complete, accurate, confirmable manner, the
requirements, design, performance, or other
feature of a system or component, and often the
Procedures for determining whether these
provisions have been Satisfied. We observe errors,
which can often be connected with failures. But
the decisive cause of the fault is often very hard to
find.

Activities in software testing

Verifica

tion

Error

Detection

Validation

D.Meenakshi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3729-3731

www.ijcsit.com 3729

II. OBJECTIVES :
 A good test case is one that has a probability of

detecting an error.
 A superior test is not redundant.
 A successful test is one that uncovers a yet

undiscovered error.
 A good test supposed to be “best of breed”.
 To check if the method does what it is predictable

to do.

 To verify if the system is “Fit for function”.
 To confirm if the system meets the requirements

and be executed successfully in the Intended
environment.

 Executing a program with the intention of finding
an error.

Testing type Specification Scope Opacity Who do it?

Unit
Low level design Actual

code
Classes White box programmer

Integration
Low level and high level

design
Multiple classes White and Black box programmer

Function High level design Whole product Black box Independent test group

System Requirement analysis
Whole product in

environment
Black box Independent test group

Acceptance Requirement analysis
Whole product in

environment
Black box Customer

Beta Adhoc
Whole product in

environment
Black box Customer

Regression Changed software
Whole product in

environment
White and Black box

Independent test group
programmer

`III. SOFTWARE TESTING LIFECYCLE – PHASES

IV LEVELS OF TESTING:

Unit testing:
 The initial level of testing.
 Tests done on particular methods or components.
 Requires information about internal program

design and code.
 Test wll be done by Programmers (not by testers).

Requirement
study

 Testing Cycle starts with the study of user‟s
requirements.

 Understanding of the requirements is very essential for
testing the product

Design
 Component Identification
 Test Specification Design
 Test Specification Review

Construction

Test Execution

 Code Review , Test execution and evaluation
 Performance and simulation Testing

Deployment

Test Closure
 Test summary report ,Project De-brief , Project

Documentation
Test Process Analysis

 Analysis done on the reports and improving the application‟s
performance by implementing new technology and additional

D.Meenakshi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3729-3731

www.ijcsit.com 3730

Objectives

To test the function of a program or unit of
code such as a program or module,To test
internal logic,To verify internal design,To
test path & conditions coverage,To test
exception conditions & error handling,To test
the function of a program or unit of code such
as a program or module,To test internal
logic,To verify internal design,To test path &
conditions coverage,To test exception
conditions & error handling

When After modules are coded
Who Developer

Input
Internal Application Design,Master Test
Plan,Unit Test Plan

Output Unit Test Report

Methods
White Box testing techniques,Test Coverage
techniques

Tools
Debug,Re-structure,Code
Analyzers,Path/statement coverage tools

Incremental Integration Testing

 It is done based on design and Continuous testing
of an application as and when a new functionality
is added.

 Application’s functionality aspects are required to
be independent enough to work separately before
completion of development.

 Done by programmers or testers.
Top-down integration:

 Develop the skeleton of the system and integrates
it with components.

Bottom-up integration
 Integrate infrastructure components then add

functional components.
 To simplify error localization, systems should be

incrementally integrated

Objectives
To technically verify proper interfaces
between modules, and within sub-systems

When After modules are unit tested
Who Developer

Input
Internal & External Application Design
,Master Test Plan ,Integration Test Plan

Output Integration Test report

Methods
White and Black Box techniques ,Problem /
Configuration Management

Tools Debug ,Re-structure ,Code Analyzers

System testing:
To verify that the system components perform control
functions,To perform inter-system test,To demonstrate that
the system performs both functionally and operationally as
specified,To perform appropriate types of tests relating to
Transaction Flow, Installation, Reliability, Regression etc.

Acceptance testing:
To check whether the software meets customers
requirements or not.
Beta testing:
Testing the software under the customers environment.
Regression testing:
Testing done to the software after making the changes or
enhancements

V. TEST PLAN
 Purpose of preparing a Test Plan

 Validate the acceptability of a software product.
 Help the people outside the test group to

understand „why‟ and „how‟ of product
validation.

 A Test Plan should be thorough enough (Overall
coverage of test to be conducted)

Scope
 The areas to be tested by the QA team.
 Specify the areas which are out of scope (screens,

database, mainframe processes etc).
Test Approach

 Details on how the testing is to be performed.
 Any specific strategy is to be followed for testing

(including configuration management).

VI. CONCLUSION :
Testing can show the presence of faults in a system; it
cannot prove that there are no remaining faults. Component
developers are dependable for component testing; system
testing is the responsibility of a separate team. Integration
testing is testing increments of the system; release testing
involves testing a system to be released to a customer. Use
experience and guidelines to design test cases in defect
testing. Interface testing is designed to discover defects in
the interfaces of composite components. Equivalence
partitioning is a way of discovering test cases - all cases in
a partition should behave in the same way. Structural
analysis relies on analyzing a program and deriving tests
from this analysis. Test automation reduces testing costs
by supporting the test process with a range of software
tools.

REFERENCES
[1]. Lessons Learned in Software Testing, by C. Kaner, J. Bach, and B.

Pettichord
[2]. Testing Computer Software, by C. Kaner, J. Falk, and H. Nguyen
[3]. Effective Software Testing, by E. Dustin
[4]. Software testing, by Ron Patton
[5]. Software engineering, by Roger Pressman
[6]. http://people.engr.ncsu.edu/txie/testingresearchsurvey.htm
[7]. http://www.engpaper.com
[8]. http://www.people.engr.ncsu.edu/txie/testingresearchsurvey.htm
[9]. www.cs.cmu.edu/luluo/Courses/17939Report.pdf
[10]. www.findwhitepapers.com
[11]. www.scribd.com

D.Meenakshi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3729-3731

www.ijcsit.com 3731

